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Abstract. The presence of an anomaly in binding energies for the “island of inversion” centered at Z = 11,
N = 21 is obtained by comparison of macroscopic binding energies and experiment. The macroscopic
calculations were done with a mass formula deduced from the reformulation of the liquid-drop model of
Myers et al.; this formula is described in detail such as its predictions for binding energies of neutron-rich
A = 29–44 nuclei. These calculations have indicated the presence of anomalies in the “island of inversion”. A
weak-coupling approximation is applied to study this deformed region. The binding-energy values obtained
using this model show the absence of these anomalies.

PACS. 21.10.Dr Binding energies and masses – 27.30.+t 20 ≤ A ≤ 38

1 Introduction

The measurements made by Thibault et al. [1] on the
27–32Na have indicated that 31Na and 32Na were more
bound than what was given by the theoretical predictions.
These results have indicated the first signs of the inver-
sion of shell ordering around N = 20. This phenomenon
was observed as irregularities in the binding energies of
neutron-rich A ∼ 32 nuclei. Note that some of these nu-
clei are deformed in their ground state, and this deforma-
tion is due to the coexistence of the normal and intruder
configuration.

Detraz et al. [2] have included in their study the Mg
isotopes and found that the first excited state of 32Mg lies
at a low excitation energy of 885 keV which indicates a
nuclear deformation.

Basing on shell model calculations, Chung et al. [3]
showed that the binding energy of N = 20 Na and Mg
isotones could not be understood by using shell model
interactions with only the orbits of sd space.

Because of this, Poves et al. [4] carried out shell model
calculations in the πdZ-8

5/2 d
N-18
3/2 (f7/2, p3/2)

2 space and ex-

amined the properties of E2 for the considered nuclei.
Brown et al. [5] developed an interaction in the

πdZ-8
5/2 d

N-18
3/2 (f7/2, p3/2)

2 space designated WBMB. They

have employed it for the calculations of neutron-rich
A = 29–44 nuclei.

For exploring the 2~ω binding energy systematic for a
large range of Z andN , they carried out calculations using
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the weak-coupling model [6] based on n~ω excitations.
They found that it is a good approximation for the full
calculations.

Further results in this region have been obtained by
Nummela et al. [7,8] who have performed beta decay stud-
ies for determining the level structure of 34Si (N = 20),
the first information on level structure of the N = 21 nu-
clei, 35Si and 33Mg, and have corrected the position of the
level (3/2)− in 35Si.

2 Macroscopic calculations

2.1 The mass formula

The aim is to develop a mass formula for calculating the
binding energies of neutron-rich A = 29–44 nuclei. To do
so we have reformulated the liquid-drop model of Myers
et al. [9] taking the Weizsäcker mass formula as a starting
point and basing on the relative neutron excess I.

After introducing the relative neutron excess in the
Weizsäcker formula, we obtain

BE = avA− asA
2

3 − ac
Z2

A
1

3

− aa
(N − Z)2

A
± δ

= avA− asA
2

3 − ac
Z2

A
1

3

− aaI2A± δ

= av(1− kvI2)A− asA
2

3 − ac
Z2

A
1

3

± δ . (1)
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As we see, the form of the volume term is not like
that of the surface term although these two terms depend
on the geometry of the nucleus (volume and surface). So
because these two terms play the same role, they must
have the same form, so we write the surface term as the
volume term and the equation becomes

BE = av(1− kvI2)A− as(1− ksI2)A
2

3 − Ec ± δ . (2)

The electrostatic energy is [10]

Ec =

[

3

5

e2
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(

d

r0

)2
Z2

A

]

. (3)

We take for δ the corrected form of Myers et al. [11]:
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For Z = N we see that I vanishes so we introduce the
first correction on this mass formula, which is the Wigner
term [11] given by

∆Ewig = 30(|I|+ d), (5)

where
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
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A
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(6)

Taking into account the movement of nucleons in the
nucleus, we introduce the second correction which is the
shell correction given by [10]:

Eshell = α
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Here Mi−1,Mi are the magic numbers.
The mass formula becomes

BE = av(1− kvI2)A− as(1− ksI2)A
2

3
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A
+ Eshell ± δ′ , (10)

where av, kv, as, ks, ac1, ac2 are parameters to be deter-
mined by a fit to the experimental binding energies of
the nuclei:

kv = aa/av, ks = aa/as, I = (N − Z)/A.

The term δ′ can be written as follows:
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2.2 Determination of the parameters

For deducing the parameters included in the formula, we
have fitted the experimental masses (binding energies) of
the nuclei [12]. We have excluded the masses without in-
dication of precision errors because we need their errors
in the fit, and supposed that kv = ks = k in the formula.
The procedure of the fit is as in ref. [10].

2.3 Results

The fit gives this series of parameters:

av = 13.83MeV, kv = 1.99,
as = 12.43MeV, ks = 2.52,
ac1 = 0.72MeV, ac2 = 1.18MeV,
α = 8.47MeV, β = 1.10.

The results obtained for the binding energies of neutron-
rich A = 29–44 nuclei are not satisfying compared to ex-
periment, and have indicated anomalies when they were
distributed on a (N,Z) chart. These anomalies are around
the region A ∼ 32 (fig. 1).

To solve this problem, we have performed weak-
coupling calculations applied to particle-hole states in the
mass region A ∼ 32.

3 Weak-coupling calculations

The weak coupling is an interaction between the collective
motion of nucleons in the same shell and the motion of
the single particle. This model is applied for nuclei near
sphericity.

The Hamiltonian is given by

H = H1 +H2 +Hint , (12)

where H1 is the Hamiltonian of the first group of particles,
H2 is the Hamiltonian of the second group of particles,
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Fig. 1. Distribution of experimental and calculated binding
energies on a (N, Z) chart. ldm: liquid-drop model calculations,
exp: experiment. The dashed lines surround the island of in-
version region, the magic number 20 is selected by thick lines.

Hint is the Hamiltonian of the interaction between the
two groups of particles.

In the B-F-Z model [13–16], the interaction is charac-
terized by the following Hamiltonian:

Hint = γN1 ·N2 + βT1 · T2 , (13)

where N1 and N2 are the numbers of particles in the two
interacting levels; T1 and T2 are the isospins of the two
interacting levels.

The diagonalisation ofH is done by the diagonalisation
of each term separately in the basis

ψIM,TTz
=
[

(l)
n1

j1,T1
× (l)

n2

j2,T2

]

IM,TTz

. (14)

In this case, the excitation energies are given by

Ex = ε1 + ε2 + γn1n2 + n1πn2πεC

+
β

2

[

T (T + 1)− T1 (T1 + 1)− T2 (T2 + 1)
]

, (15)

where ε1 is the energy of the holes in the first level, ε2 is the
energy of the particles (neutrons) in the second level. (We
deal with the neutron excitations, so Z is constant and
these two energies are calculated from masses of the con-
sidered isotopes.) n1π and n2π are the number of protons
in the two interacting levels. εC is the Coulomb interaction
between the protons.

Note that this formula is applied when j1 and/or j2 is
equal to zero.

In order to calculate the masses using this model, we
have applied this formula on particle-hole configurations
for the neutron-rich A ∼ 32 nuclei.

We have studied nuclei having Z = 10–15, N = 18–23.
We have taken only the neutron excitations, so we ne-

glect the term of the Coulomb energy and that of the
isospin. We obtain the following formula:

Ex = ε1 + ε2 + n1n2γ . (16)

Because the anomalies are following the variation of N
for each Z constant (fig. 1), we have replaced the constant
γ by a linear function in Z, following an idea of Warburton
et al. [6].

In this case, the excitation energies are given by

Ex = ε1 + ε2 + n1n2 (a1Z + a2) . (17)

And the masses are given by

M =Mc + ε1 + ε2 + n1n2 (a1Z + a2) , (18)

where Mc is the mass of the core (N = 20) of the consid-
ered nucleus.

The binding energy is given by

BE = Zmp +Nmn −M . (19)

3.1 Determination of the parameters

We have determined the constants of this function by fit-
ting the experimental excitation energies of neutron-rich
A ∼ 32 nuclei [8,12].

3.2 Results

The parameters of this function obtained after the fit are

a1 = −33 keV, a2 = −8 keV.

The results obtained for the binding energies of
neutron-rich A ∼ 32 nuclei are found in good agreement
with experiment.

In fig. 2, we represent the experimental and calculated
binding energies of the neutron-rich A ∼ 32 nuclei. We
observe for Z = 12 that when N increases, the bind-
ing energies calculated by the weak-coupling model (wcm)
converge to the experimental values more than those cal-
culated with the mass formula.

In the case of Z = 11 the wcm is better than the ldm
but is still not very accurate especially for N > 20. In the
case of Z = 10 the wcm is not very good for smaller values
of N where the ldm is better.

The reason is the strong deformation in the island of
inversion centered at Z = 11, N = 21 and the resistance
of its nuclei to this deformation. Another possible reason
is that for Z = 10 and Z = 11 (far from the shell closure
Z = 14) there is a possible interaction between the holes
in the proton shell and the excited neutrons.

We see that this model is a good approximation to
study the binding energies for nuclei having great values
of Z, and it is not better for small values of Z.

Figure 3 represents a distribution of experimental and
calculated binding energies, where we can clearly see the
absence of anomalies.
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Fig. 2. Representation of experimental and calculated bind-
ing energies using the liquid-drop model (ldm) and the weak-
coupling model (wcm) versus N .

4 Conclusion

In this work, we have calculated binding energies of the
neutron-rich A = 29–44 nuclei using a mass formula
deduced from the reformulation of the model of Myers
et al. [9]. This reformulation was done by taking the
Weizsäcker mass formula as a starting point, and basing
on the relative neutron excess I. The values obtained us-
ing this formula are not in agreement with experiment,
and when they were distributed on a (N,Z) chart they
have indicated bad distribution in the A ∼ 32 region.

For solving this problem, we have carried out weak-
coupling calculations of binding energies of neutron-rich
A ∼ 32 nuclei. The values obtained are in agreement
with experiment. Another distribution of these values on
a (N,Z) chart shows the absence of anomalies. These re-
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Fig. 3. Distribution of experimental and calculated binding
energies. exp: experimental values, ldm: calculated values us-
ing the liquid-drop model, wcm: calculated values using the
weak-coupling model. The dashed lines surround the island of
inversion region, the magic number 20 is selected by thick lines.

sults indicate that the weak-coupling model can be a good
approximation for studying this deformed region.

The authors would like to thank Dr. G. Walter for stimulating
discussions and corrections to this work.
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